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Why Study CRNs?

• Fundamental model of chemical 
kinetics used in the natural sciences

• Fundamental model of population 
dynamics in ecology

• Sensor networks
(population protocols)

• Fundamental mathematical structure: 
(vector addition systems, Petri nets
commutative semigroups, bounded context-free 
languages, uniform recurrence equations)



Why Understand Computation with CRNs

• Embed programming into environments not compatible with 
traditional von Neumann computer architectures



Why Understand Computation with CRNs

• How do cells process information?

?? CRN 
Algorithms ??

Regulatory networks

Question: How to make the computational perspective 
herein more relevant in biology?
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Chemical Reaction Networks (CRNs)
Discrete Model

• Reactions {rxn1, ..., rxnr} where each reaction 
rxni = (ri, pi, ki) ∈ ℕd 𝗑 ℕd 𝗑 ℝ+

• d species and r reactions

• Reaction rxni can occur in state x if x−ri≥0. If reaction rxni 
occurs in state x, the state changes from x to x−ri+pi

• A state x∈ℕd specifies the molecular counts of each species  

( (1,1,0),  (1,0,1),  k1) A+B
k1!A+ C

Chemical notation:

( (0,0,1),  (2,0,0),  k2) C
k2!A+A



Chemical Reaction Networks (CRNs)
Discrete Model

The time until next reaction is exponentially distributed with rate ∑propi 

The probability that the next reaction is rxnj is propj/∑propi 

McQuarrie 1967, van Kampen, Gillespie 1977, etc

• The system evolves via a continuous time Poisson process:

• Start in some initial state x in solution volume v

Suppose current state x=(a, b, c,...). 

A k�⇥ . . .

A+B k�⇥ . . .

A+A k�⇥ . . .

reaction type propi

k⋅a

k⋅a⋅b / v

k⋅a⋅(a-1) / (2v)



Scaling up from the stochastic to 
the deterministic model

Increase solution volume v and the molecular counts of all 
species such that for each species #X/v stays constant.  

In the limit v→∞, we get the deterministic 
system described by ODEs.



Molecular Realization of CRNs with 
Strand Displacement Cascades

Soloveichik, Seelig, Winfree "DNA as a Universal 
Substrate for Chemical Kinetics" PNAS (2010)

Cardelli, "Two-Domain DNA Strand 
Displacement" Math Structs CS (2013)

Qian, Soloveichik, Winfree, "Efficient Turing-
Universal Computation With DNA Polymers" 
DNA 16 (2010)

Source of energy and mass: 
auxiliary species

Cardelli, "Strand Algebras for DNA Computing" 
Nat Comp (2011)

Chiniforooshan, Doty, Kari, Seki "Scalable, Time-
responsive, Digital, Energy-Efficient Molecular 
Circuits Using DNA Strand Displacement" DNA 
16 (2010)

▶

▶

▶

▶

▶

Does every CRN have a molecular realization?



Chen, Dalchau, Srinivas, Phillips, Cardelli, Soloveichik, Seelig, Winfree "Programmable Chemical Controllers 
Made From DNA" Nature Nanotechnology (2010)

k1

k2

k3

k4

Molecular Realization of CRNs with 
Strand Displacement Cascades

Does every CRN have a molecular realization?
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uniform vs non-uniform:  Is a single CRN 
supposed to handle all inputs, or do we add reactions 
for larger inputs?

deterministic vs probabilistic:  Is the correct 
output guaranteed or merely likely?

halting vs stabilizing: Does the CRN "know" 
when it has finished?

Dichotomies of Computation in CRNs

discrete vs continuous:  Which model of CRNs?



uniform vs non-uniform:  Is a single CRN 
supposed to handle all inputs, or do we add reactions 
for larger inputs?

deterministic vs probabilistic:  Is the correct 
output guaranteed or merely likely?

halting vs stabilizing: Does the CRN "know" 
when it has finished?

Dichotomies of Computation in CRNs

discrete vs continuous:  Which model of CRNs?

halting: irreversibly produce N or Y

stabilizing: eventually stabilize to N 
or Y 



Dichotomies of Uniform Computation

halting stabilizing

deterministic (finite) semilinear

probabilistic Turing-universal Δ2
0



X1 + X2 → Y
Y + N → Y
X1 + Y → X1 + N
X2 + Y → X2 + N

Start with 1Y and input amounts of X1, X2

Predicate:  X2 ≥ X1?

Eventually stabilizes to a state with Y (YES) or N (NO)

Predicate Computation (Example)
Deterministic, Stabilizing 

Predicate:  X1 == X2?

X2 + N → Y
X1 + Y → N



Predicate Computation
Deterministic, Stabilizing 

output of a state: 

output-stable states: states with YES or NO output such 
that all states reachable from them have the same output

deterministic, stabilizing computation: 
For any input, a correct output-stable state is reachable from 
any reachable state. (Implies that incorrect output-stable 
states are not reachable.)

contains Y but not N
contains N but not Y
otherwise

YES
NO
undefined

initial state: input counts of input species, fixed amounts of 
other species



• A few facts about recognizing stability

• How states can be truncated to preserve stability

• A Pumping Lemma

An Impossibility Result
Deterministic, Stabilizing 

Claim: Predicate X2 ≥ (X1)2  cannot be computed in this 
way

A proof sketch:

Angluin, Aspnes, Eisenstat, “Stably computable predicates are semilinear” (2006)



Fact 1:  If x is unstable, then any y≥x is also unstable.

Fact 2:  Any set in ℕd has a finite number of minimal 
elements (Dickson's Lemma).

Claim 1: For any CRN, there is a finite set of states 
U={u1,...,um} such that: 
x is unstable   iff   x≥ui for some ui∈U

Recognizing Unstable States
Fact 0:  Let x,y,z be states. If x ⟹ y then x+z ⟹ y+z

Define: State x is unstable if x ⟹ y such that y has 
opposite output of x, or y has undefined output (and x, 
y have at least one molecule of output species)



Truncations that Preserve Stability

Choose a "threshold" 𝛕 larger than the amount of any 
species in any state in U. 

Claim 2: Suppose states x≤y, x is YES-output-stable, 
and y is larger than x only on species whose count is at 
least 𝛕 in x. Then y can’t be reached from NO-input.

Assume the CRN computes correctly (deterministic, 
stabilizing).

Pf: By Claim 1, y can’t be unstable. Thus y can’t reach a NO voter. y 
contains Y species so by CRN correctness can’t be reachable from 
NO input.



Pumping Lemma

Consider any infinite increasing sequence of YES inputs 
and the corresponding (non-decreasing) sequence of 
input states x1, x2, ... 

Let δi = xi+1 - xi

We know that every xi ⟹ [some YES-output-stable 
state]. 

But we take a more specific path.

1/3



x1  +  δ1  +  δ2  +  δ3  +   ...   +  δi      =      xi

⟹

y1  
⟹

y2  
⟹

y3  

⟹

yi  
....

Claim 3: all yi can be YES-output-stable.

Pumping Lemma 2/3

W.l.o.g. yi can be non-decreasing (Dickson’s Lemma)



Pumping Lemma 3/3

There are yi ≤ yk that have the same counts of all 
species < 𝛕. 

Recall:   yi + δi+1 +...+ δk ⟹ yk

Add (δi+1 +...+ δk) to yk and take the same path. We get 
a new state z that cannot be reached from a NO-output 
(by Claim 2). z can be reached from xk + (δi+1 +...+ δk), 
so that must be a YES-input. 

This path converts input species (δi+1 +...+ δk) into 
species that are at least 𝛕 in yk. 

Repeat.



Lemma: If there is an infinite sequence of (distinct) YES 
inputs x1, x2, ..., then there are xi < xk and such that all of 
{xi+n·(xk−xi) | n∈ℕ} is YES also.

An Impossibility Result
Deterministic, Stabilizing 
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Ex: Predicate X2 ≥ (X1)2  
X2

X1



X1

X2

{(3,0)+n1⋅(0,2) | n1∈N}     ∪     {(2,0)+n1⋅(1,0)+n2⋅(1,1) | n1,n2∈N}

...

...

Definition of Semilinear Sets
A set A ✓ Nd

is linear if there exist vectors b,u1, . . . ,up 2 Nd
such that

A = {b+ n1u1 + · · ·+ npup |n1, . . . , np 2 N}
A is semilinear if it a finite union of linear sets.



Computational Power of 
Deterministic, Stabilizing CRNs

Theorem: Predicates computable in this manner are 
exactly the semilinear predicates

Angluin, Aspnes, Eisenstat, “Stably computable predicates are semilinear” (2006)
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{n1⋅(0,1)+n2⋅(1,1) | n1,n2∈N} {n1⋅(1,1) | n1∈N}

Predicate:  X2 ≥ X1 ? Predicate:  X1 == X2 ? Predicate:  X1 ≥ (X2)2 ?
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f(x1, x2)=max(x1, x2)
X1→L1+Y
X2→L2+Y
L1+L2→K
Y+K→∅

X→Y+Y

f(x)=2x f(x1, x2)=min(x1, x2)

X1+X2→Y
f(x1, x2)=x1+x2

X1→Y
X2→Y

X1→N+L
L+X2→∅
L+N→L+Y
X2+Y→ X2+N
N+Y→N+N 

f(x1, x2)=x1 if x1>x2 and 0 otherwise

Function Computation (Example)
Deterministic, Stabilizing 



Theorem: Functions computable in this manner are 
exactly those with semilinear graphs

Computational Power of 
Deterministic, Stabilizing CRNs

0
0
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{ (1, 0) + n1 · (2, 1) | n1 ∈ℕ}∪{ n1 · (2 , 1) | n1 ∈ℕ}

{ n1 · (1, 1, 1) + n2 · (1, 0, 0)(1, 0, 0) | n1 , n2 ∈ℕ}∪{ n1 · (1, 1, 0) + n2 · (0, 1, 0) | n1 , n2 ∈ℕ}+

f(x)=⎣x/2⎦ f(x1, x2)=x2 if x1>x2 and 0 otherwise f(x) = X2

not semilinear
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Chen, Doty, Soloveichik, "Deterministic Function Computation with Chemical Reaction 
Networks" (2013)
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halting stabilizing

deterministic (finite) semilinear

probabilistic Turing-universal Δ2
0

Dichotomies of Uniform Computation



Computational Power of 
Probabilistic, Halting CRNs

Show Turing Universality by simulating Register Machines 
(aka Minsky Counter Machines)

• fixed number of registers, each holding nonnegative integer

• two kinds of instructions:
i: inc(r,j)
i: dec(r,j,k)

increment register r and go to instruction j

if register r is >0, then decrement it and go to 
instruction j; otherwise, go to instruction k

• 4 registers, 9 instructions
• start with input in reg R1
• halt with output in reg R4

Example: f(x)=x2 1: dec(R1,2,9)
2: inc(R2,3)
3: inc(R3,4)
4: dec(R2,5,7)
5: inc(R1,6)

6: inc(R4,4)
7: dec(R1,8,9)
8: inc(R2,7)
9: dec(R3,4,halt)



Computational Power of 
Probabilistic, Halting CRNs

i: inc(r,j)

i: dec(r,j,k)

Si → Rr + Sj

Si + Rr → Sj

           Si → Sk

Register machines have a very natural CRN implementation:

Problem:  second reaction may occur even if 
register is non-zero

One molecule of S1,..., Sm to store the current instruction
The number of molecules of species Rr stores the value of 
register r



Computational Power of 
Probabilistic, Halting CRNs

i: inc(r,j)

i: dec(r,j,k)

Si → Rr + Sj

Si + Rr → Sj

           Si → Sk

Register machines have a very natural CRN implementation:

One molecule of S1,..., Sm to store the current instruction
The number of molecules of species Rr stores the value of 
register r

C1+ + C3

+ A

C1 + A → C2 + A
C2 → C1

C2 + A → C3 + A
C3 → C2

“clock” module:



Computational Power of 
Probabilistic, Halting CRNs

Theorem: Turing-universal computation is possible in this 
setting with the error probability bounded independently of 
the number of steps.

Soloveichik, Cook, Winfree, Bruck, "Computation with Finite Stochastic Chemical 
Reaction Networks" (2008)
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Measuring Computation Speed “Fairly”

1. Fix largest rate constant (say k=1)

2. Volume v = O(maximum molecular count)

*For Turing-universal computation assume volume dynamically scales with 
total molecular count.

This translates to upper-bounding concentrations in the deterministic 
limit.



Speed of Turing-Universal Computation

1. Too many steps: RM requires Ω(t 2s) steps.

2. Slow reactions: Volume v = Ω([count of A] + 
[count of register species]) = Ω(2t + 2s).
Thus the worst case expected time for reaction 
Si + Rr → Sj  is  v = Ω(2t + 2s).

Two apparent sources of slowdown:

Suppose we simulate a TM that runs in t steps and uses s bits 
of memory.

1



Surprisingly, both issues can be overcome for polynomial and 
even linear time simulation.

Speed of Turing-Universal Computation

Implies that likely there is no general way to speed up 
“tau-leaping”.

Soloveichik, Cook, Winfree, Bruck, "Computation with Finite Stochastic Chemical 
Reaction Networks" (2008)

Angluin, Aspnes, Eisenstat, "Fast computation by population protocols with a 
leader" (2006)

Soloveichik, "Robust Stochastic Chemical Reaction Networks and Bounded Tau-
Leaping" (2009)



input: X 
output: Y

1

n
+

1

n�1

+ · · ·+ 1

1

= Q(logn)

expected time to finish:

Compute f(x) = 2⋅x

X
1!Y + Y

Speed of Semilinear Computation (Examples)
n=number of input molecules 
volume v = Θ(n)

fast!



n=number of input molecules 
volume v = Θ(n)

Speed of Semilinear Computation (Examples)

Compute f(x) =  x/2⌊   ⌋

X +X
1!Y

input: X 
output: Y expected time to finish:

2n
n(n�1)

+
2n

(n�1)(n�2)
+ · · ·+ 2n

2 ·1 = Q(n)

slow!



n=number of input molecules 
volume v = Θ(n)

Speed of Semilinear Computation (Examples)

Compute f(x1,x2) = 0 otherwise
x2 if x1>0{

X1 +X2
1!X1 + Y

Y +X2
1!Y + Y

input: X1, X2 
output: Y O(logn)expected time to finish:

fast!hint: consider two cases:
x1 < x2, and x2 ≥ x1



Speed of Semilinear Computation

Theorem: Every semilinear predicate/function can be 
deterministically computed by a chemical reaction network that 
stabilizes in expected time O(polylog(n)) (ie polynomial in the 
number of bits to write the input in binary)

n=number of input molecules 
volume v = Θ(n)

• Combine fast probabilistic, halting computation with slow deterministic, 
stabilizing computation. If the fast computation is correct then the correct 
output stabilizes quickly. Otherwise, slow computation corrects error. 

• Error probability of fast computation small enough that the overall 
expected time is almost that of the fast computation

Trick:

Chen, Doty, Soloveichik, "Deterministic Function Computation with Chemical Reaction 
Networks" (2013)

Angluin, Aspnes, Eisenstat, "Fast computation by population protocols with a 
leader" (2006)
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Some Open Problems for Theory

• Computational complexity of reachability

• Better characterize non-uniform computation

• Fuel and energy use 
fundamental discoveries about the thermodynamics of computation?

• Models of cellular regulatory networks 
relevant insights for systems/synthetic biology?



Computational complexity of reachability

Superset reachability
Problem: Given a CRN, states x and y, figure out whether some 
z≥y is reachable from x. 
Can be done in 2O(n log(n)) space, where n = [number of species] + 
log(x) + log(y). This is nearly optimal.

Rackoff, "The Covering and Boundedness Problems For Vector Addition 
Systems" (1978)

Exact state reachability
Problem: Given a CRN, states x and y, figure out if y is reachable 
from x.
At least exponential space: Lipton 1976
Decidable: Mayr 1981, Kosaraju 1982, Leroux 2009. But not even 
primitive recursive bound known.

http://dl.acm.org/author_page.cfm?id=81100007260&coll=DL&dl=ACM&trk=0&cfid=352943666&cftoken=88171013
http://dl.acm.org/author_page.cfm?id=81100007260&coll=DL&dl=ACM&trk=0&cfid=352943666&cftoken=88171013
http://dl.acm.org/author_page.cfm?id=81100330009&coll=DL&dl=ACM&trk=0&cfid=352943666&cftoken=88171013
http://dl.acm.org/author_page.cfm?id=81100330009&coll=DL&dl=ACM&trk=0&cfid=352943666&cftoken=88171013


Better characterize non-uniform computation

s-space bounded TM can be simulated with log(s) reactions [???]
Cardoza, Lipton, Meyer, "Exponential Space Complete Problems for Petri Nets and 
Commutative Semigroups" (1976)

Deterministic, halting

Almost optimal: To figure out whether Y or N can be produced for 
log(s) reactions can be done in sO(log(log(s)) space.

Rackoff, "The Covering and Boundedness Problems For Vector Addition 
Systems" (1978)

Deterministic, stabilizing
???

Characterize in terms of time-complexity, non-uniform circuit 
families, etc [???]



Fuel and energy use

Tagged CRNs: explicit sources of mass and energy

Condon, Manuch, Thachuk “Less haste, less waste: on recycling and its limits in strand 
displacement systems” (2012)

Thachuk, “Space and energy efficient molecular programming”, PhD thesis (2012)

New discoveries about the thermodynamics of 
computation?

A ⟷ A + B Fuel1 + A ⟷ A + B + Fuel2

s-space-bounded computation can be computed by a logically-
reversible tagged CRN using poly(s) molecular count



Models of cellular regulatory networks 
Relevant insights for systems/synthetic biology?

Amounts persist unless explicitly consumed or produced 
(passive information storage in amount)

Digital stoichiometries  

Everything is consumed and turned-over (active information 
storage)

Most regulation is catalytic

Saturating rate laws: eg Hill-functions

I would argue that CRNs are a good programming 
language for strand displacement cascades.

But in cells: ???
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